# A novel heterocyclic compound: <br> catena-poly[[[diaquasodium(I)]-di- $\mu$ aqua] hemi(1,5-dihydroxy-4,8,9-trioxa-2,6-diazabicyclo[3.3.1]nona-2,6-diene-3,7-diolate)]. Retraction 

Rui-Qin Fang, ${ }^{\text {a }}$ Zhu-Ping Xiao, ${ }^{\text {a,b }}$ Ping Cao, ${ }^{\text {a }}$ Da-Hua Shi ${ }^{\text {a }}$ and Hai-Liang Zhu ${ }^{\mathbf{a}}$ *

${ }^{\text {a }}$ School of Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Shangrao Normal College, Jiangxi, People's Republic of China Correspondence e-mail: zhuhl@nju.edu.cn

Received 26 November 2007
Accepted 27 November 2007
Online 25 January 2008

The paper by Fang et al. [Acta Cryst. (2007), C63, m193-m194] is retracted. It has subsequently been shown that the crystal studied was borax.

We wish to withdraw the paper by Fang et al. (2007) on a compound alleged to be $\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{2}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{7}\right)$. It has subsequently been shown that the crystal studied was borax, $\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{2}\left(\mathrm{~B}_{4} \mathrm{H}_{4} \mathrm{O}_{9}\right)$, which was studied by neutron diffraction by Levy \& Lisensky (1978). The C, H and N analytical data reported by us in our paper are also incorrect.

## References

[^0]Acta Crystallographica Section C

## Crystal Structure

Communications
ISSN 0108-2701

# A novel heterocyclic compound: catena-poly[[[diaquasodium(I)]-di- $\mu$ aqua] hemi(1,5-dihydroxy-4,8,9-trioxa-2,6-diazabicyclo[3.3.1]nona-2,6-diene-3,7-diolate)] 

Rui-Qin Fang, ${ }^{\text {a }}$ Zhu-Ping Xiao, ${ }^{\text {a,b }}$ Ping Cao, ${ }^{\text {a }}$ Da-Hua Shi ${ }^{\text {a }}$ and Hai-Liang Zhu ${ }^{\text {a* }}$

${ }^{\text {a }}$ School of Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Shangrao Normal College, Jiangxi, People's Republic of China Correspondence e-mail: zhuhl@nju.edu.cn

Received 6 January 2007
Accepted 15 January 2007
Online 14 April 2007
In the title compound, $\left\{\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{2}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{7}\right)\right\}_{n}$, the 1,5-dihydroxy-4,8,9-trioxa-2,6-diazabicyclo[3.3.1]nona-2,6-diene3,7 -diolate anion lies across a twofold axis in the space group $C 2 / c$; there are two independent Na sites, one on a twofold axis and the other on a centre of inversion. Hydrogen bonds link the $\left\{\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+}\right\}_{n}$ chains and diolate anions into a threedimensional framework.

## Comment

The synthesis of organic compounds from common inorganic materials has long attracted attention because of its potential significance in pharmacology, agriculture and the chemical industry (Gleix, 1954; Achille et al., 1998). To our knowledge, however, there have been no reports of the formation of heterobicyclic compounds from a metal carbonate with ammonia in a single-step process. Recently, we have synthesized from sodium carbonate and aqueous ammonia by a hydrothermal method the novel heterocyclic title compound, (I), whose structure is reported here.


The title compound crystallizes in the centrosymmetric space group $C 2 / c$ with two independent Na sites, one on a twofold axis and the other on an inversion centre, and a 1,5-dihydroxy-4,8,9-trioxa-2,6-diazabicyclo[3.3.1]nona-2,6-diene-

3,7-diolate anion located across a twofold axis (Fig. 1). Both Na sites are six-coordinated by O atoms from water molecules, forming distorted octahedra with $\mathrm{Na}-\mathrm{O}$ distances in the range 2.395 (3) -2.458 (3) $\AA$, which are comparable to those observed in $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (El Saffar, 1968) and $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (Betzel et al., 1982). Neighbouring sodium octahedra share edges via two water molecules, forming infinite chains parallel to [001] (Fig. 1). Similar arrangements of hydrated sodium ions are found in $\mathrm{Na}_{2} \mathrm{C}_{4} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Ranganathan \& Kulkarni, 2002) and $\mathrm{NaHC}_{4} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Petrova et al., 2006).

The 1,5-dihydroxy-4,8,9-trioxa-2,6-diazabicyclo[3.3.1]nona-2,6-diene-3,7-diolate anion contains a novel heterocyclic skeleton. All the bond lengths are in their normal ranges. The $\mathrm{C}-\mathrm{O}$ single-bond lengths $[\mathrm{C} 1-\mathrm{O} 1, \mathrm{C} 1-\mathrm{O} 2, \mathrm{C} 2-\mathrm{O} 3, \mathrm{C} 2-$ O 4 and $\mathrm{C} 2-\mathrm{O} 1 A$; the suffix $A$ denotes the symmetry code $\left.\left(-x+1, y,-z+\frac{3}{2}\right)\right]$ are between 1.366 (5) and 1.495 (4) $\AA$,
Figure 1


The crystal structure of (I), shown with $35 \%$ probability displacement ellipsoids. [Symmetry codes: $(A)-x+1, y,-z+\frac{3}{2} ;(B)-x, y,-z+\frac{3}{2} ;(C)-x$, $-x,-y,-z+1 ;(D) x,-y, \frac{1}{2}+z$.]


Figure 2
The crystal packing of (I), viewed along the $b$ axis. Hydrogen bonds are shown as dashed lines.
while the $\mathrm{C} 1=\mathrm{N} 1$ and $\mathrm{C} 2-\mathrm{N} 1$ bond lengths are 1.384 (4) and 1.507 (4) $\AA$, respectively. The $\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1, \mathrm{O} 2-\mathrm{C} 1-\mathrm{N} 1$ and $\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$ angles are close to $120^{\circ}$, while the $\mathrm{O} 3-\mathrm{C} 2-\mathrm{O} 4$ and $\mathrm{O} 1 A-\mathrm{C} 2-\mathrm{N} 1$ angles are $111.8(3)$ and $108.3(3)^{\circ}$, respectively. In the diolate anion, atoms $\mathrm{N} 1, \mathrm{O} 1, \mathrm{~N} 1 A$ and $\mathrm{O} 1 A$ constitute an equatorial plane, with a mean deviation from the mean plane of $0.0781 \AA$. Atoms O3, O4 and C2 are located above the plane at distances of 1.7111, 1.6691 and $0.8775 \AA$, and atoms O2 and C1 atoms are below the plane at distances of 0.9588 and $0.3207 \AA$, respectively.

All the H atoms of hydroxy groups and water molecules contribute to the formation of a hydrogen-bond network (Table 1), and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the diolate anions and the $\left\{\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+}\right\}_{n}$ chains into a threedimensional framework (Fig. 2).

## Experimental

Anhydrous sodium carbonate ( 0.318 g ) and $18 \%$ aqueous ammonia $(0.6 \mathrm{ml})$ in a $3: 5$ molar ratio were dissolved in water ( 5 ml ) with stirring at room temperature for 10 min . The solution was then transferred to a 15 ml Teflon-lined bomb and heated at 413 K for 4 d . Colourless crystals were obtained in $42 \%$ yield after cooling to room temperature. Analysis found: C $12.64, \mathrm{H} 4.77, \mathrm{~N} 7.37 \%$; calculated for $\mathrm{C}_{4} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Na}_{2} \mathrm{O}_{15}: \mathrm{C} 12.61, \mathrm{H} 4.80, \mathrm{~N} 7.35 \%$. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $3442(s)$, 1795 (w), 1254 (m), 1106 (m), 873 (w), 816 (w).

## Crystal data

$\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{2}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{7}\right)$
$M_{r}=380.18$
Monoclinic, $C 2 / c$
$a=11.935$ (7) А
$b=10.709$ (6) $\AA$
$c=12.277$ (7) $\AA$
$\beta=106.634$ (8) ${ }^{\circ}$
$V=1503.5(16) \AA^{3}$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{\text {min }}=0.932, T_{\text {max }}=0.962$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.225$
$S=1.08$
1333 reflections
116 parameters
Only H-atom displacement parameters refined

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\text {i }}$ | 0.82 | 2.11 | 2.897 (4) | 160 |
| $\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 4^{\text {ii }}$ | 0.83 | 2.19 | 2.970 (4) | 157 |
| O5-H5B . O 1 | 0.85 | 1.99 | 2.833 (4) | 171 |
| $\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2^{\text {iii }}$ | 0.81 | 2.10 | 2.869 (4) | 157 |
| $\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O} 4^{\text {iv }}$ | 0.85 | 2.05 | 2.888 (4) | 169 |
| O7-H7A $\cdots$ O8 | 0.85 | 2.12 | 2.943 (4) | 161 |
| $\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{~N} 1^{\text {v }}$ | 0.84 | 2.33 | 3.118 (4) | 157 |
| $\mathrm{O} 8-\mathrm{H} 8 A \cdots 3^{\text {iv }}$ | 0.82 | 1.99 | 2.810 (3) | 179 |
| $\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O} 2$ | 0.83 | 2.40 | 3.171 (4) | 155 |

Symmetry codes: (i) $-x+1, y,-z+\frac{3}{2}$; (ii) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (iii) $-x,-y,-z+1$; (iv) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (v) $x-\frac{1}{2}, y+\frac{1}{2}, z$.

All H atoms were located in difference maps and then treated as riding atoms $(\mathrm{O}-\mathrm{H}=0.81-0.86 \AA)$. The $U_{\text {iso }}(\mathrm{H})$ values were refined freely. The highest residual peak is located $0.98 \AA$ from $\mathrm{O} 2,1.77 \AA$ from N 1 and $1.98 \AA$ from C1.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELX 597 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL Sheldrick, 1997b); software used to prepare material for publication. SHELXL97.

This work was supported by the Measurement Foundation of Nanjing University. HLZ is grateful for the support of the National Natural Science Foundation of China (No. 30672516).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3082). Services for accessing these data are described at the back of the journal.

## References

Achille, I., Vittoria, M. \& Leucio, R. (1998). J. Org. Chem. 63, 1337-1338.
Betzel, C., Saenger, W. \& Loewus, D. (1982). Acta Cryst. B38, 2802-2804.
Bruker (1998). SMART (Version 6.02a), SAINT (Version 6.02a) and SADABS (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
El Saffar, Z. M. (1968). Acta Cryst. B24, 1131-1133.
Gleix, C. E. (1954). J. Am. Chem. Soc. 76, 107-111.
Petrova, N., Shivachev, B., Kolev, T. \& Petrova, R. (2006). Acta Cryst. E62, m1359-m1361.
Ranganathan, A. \& Kulkarni, G. U. (2002). J. Phys. Chem. A, 106, 78137819.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.


[^0]:    Fang, R.-Q., Xiao, Z.-P., Cao, P., Shi, D.-H. \& Zhu, H.-L. (2007). Acta Cryst. C63, m193-m194.
    Levy, H. A. \& Lisensky, G. C. (1978). Acta Cryst. B34, 3502-3510.

